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Random matrix elements and eigenfunctions in chaotic systems

Sanjay Hortikar* and Mark Srednicki†

Department of Physics, University of California, Santa Barbara, California 93106
~Received 16 December 1997!

The expected root-mean-square value of a matrix elementAab in a classically chaotic system, whereA is a
smooth,\-independent function of the coordinates and momenta, anda andb label different energy eigen-
states, has been evaluated in the literature in two different ways: by treating the energy eigenfunctions as
Gaussian random variables and averaginguAabu2 over them; and by relatinguAabu2 to the classical time-
correlation function ofA. We show that these two methods give the same answer only if Berry’s formula for
the spatial correlations in the energy eigenfunctions~which is based on a microcanonical density in phase
space! is modified at large separations in a manner that we previously proposed.@S1063-651X~98!06906-2#

PACS number~s!: 05.45.1b, 03.65.Sq
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Hamiltonian systems that are classically chaotic ha
quantum energy eigenvalues, eigenfunctions, and trans
matrix elements that can be profitably analyzed statistic
@1,2#. Our focus in this paper will be on matrix elements~in
the energy-eigenstate basis! of operators whose Weyl sym
bols are smooth,\-independent functions of the classical c
ordinates and momenta. Two different methods have b
proposed in the literature for calculating the root-mea
square statistical average of these matrix elements in
limit of small \. One method is to compute this average
treating the energy eigenfunctions as Gaussian random
ables; the other relates the average to the operator’s clas
power spectrum. Our goal is to see whether or not these
methods give the same result, a question that was first ra
by Austin and Wilkinson@3#. We find that the methods d
agree, but only if our recently proposed modification of B
ry’s formula @4# for the spatial correlations in energy eige
functions of chaotic systems is invoked when the spa
separation is large compared to any relevant classical
tance scales in the problem@5#.

We begin by reviewing the power-spectrum method,
sentially following the original arguments of Feingold an
Peres@6#; more rigorous treatments leading to the same
sult have been given by Wilkinson@7# and Prosen@8#. To
simplify the discussion, we will consider Hermitian oper
tors that are functions of only the coordinatesq ~and not the
momentap). Given a suitable operatorA of this type, we
begin by defining

F[E
2`

1`

dt e2t2/2tc
2
eivt^auAtAua&, ~1!

whereAt[eiHt /\Ae2 iHt /\ is the relevant operator at timet in
the Heisenberg picture,ua& is an energy eigenstate with en
ergy Ea , v is a parameter, andtc is a time cutoff that may
be needed for convergence of the integral.

We now evaluateF in two different ways. First, we use
Shnirelman’s theorem@9–13#, which says that, in the limit of
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small\, the expectation value of an operatorO in an energy
eigenstate is equal to its classical, microcanonical averag
the corresponding energy,

^auOua&5E dmEa
OW~p,q!, ~2!

whereOW(p,q) is the Weyl symbol of the operatorO, and
dmE denotes the Liouville measure on the surface in ph
space with energyE,

dmE5
1

r̄~E!

dfp dfq

~2p\! f d„E2HW~p,q!…. ~3!

Here f is the number of degrees of freedom,HW(p,q) is the
Weyl symbol of the Hamiltonian operatorH, andr̄(E) is the
semiclassical density of states,

r̄~E!5E dfp dfq

~2p\! f d„E2HW~p,q!…. ~4!

Note thatdmE is a purely classical object; the factors of\
cancel between Eqs.~3! and~4!. Also, Shnirelman’s theorem
is proved for principal symbols instead of Weyl symbols, b
there is no difference in the\→0 limit, which the theorem
also requires; see@14# for a thorough discussion.

We now apply Eq.~2! in Eq. ~1!, making the approxima-
tion ~valid in the\→0 limit! that

E dmE ~AtA!W5E dmE AW~qt!AW~q!, ~5!

whereAW(q) is the Weyl symbol of the operatorA ~which,
by assumption, depends only onq and notp), andqt is the
classical coordinate at timet, assuming an initial point (p,q)
on the surface with energyE in phase space. We therefor
obtain

F5E
2`

1`

dt e2t2/2tc
2
eivtE dmEa

AW~qt!AW~q!. ~6!

We now evaluateF in a different manner: we insert
complete set of energy eigenstates to get
7313 © 1998 The American Physical Society
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F5(
b

E
2`

1`

dt e2t2/2tc
2
eivt^auAtub&^buAua&

5(
b

E
2`

1`

dt e2t2/2tc
2
ei ~Ea2Eb1\v!t/\AabAba

52p\(
b

d\/tc
~Ea2Eb1\v!uAabu2, ~7!

where Aab[^auAub&, and d«(E) denotes a smeared del
function with a width of«. We now assume that each eige
state has a random character, so that, withEa andEb each
varied over a small range, there is a smooth distribution
values foruAabu2. Let this distribution be characterized by a
expected value, which we will call^uAabu2&. If we also take
the width \/tc of the smeared delta functions to be som
what larger than the mean level spacing, equal to 1/r̄(E) in
the limit of small\, we can replace the sum overb in Eq. ~7!

by an integral overr̄(Eb)dEb . Thus we have

F52p\E
0

`

dEb r̄~Eb!d1/r̄~Ea2Eb1\v!^uAabu2&

52p\ r̄~Ea1\v! ^uAabu2&. ~8!

Equating the right-hand sides of Eqs.~1! and~8! gives us the
desired formula for̂ uAabu2&; however, its accuracy to sub
leading order in\ can be improved by symmetrizing onEa
andEb @8# to get

^uAabu2&5
1

tH
E

2`

1`

dt e22p2t2/tH
2
eivtE dm Ē AW~qt!AW~q!,

~9!

whereĒ5 1
2 (Ea1Eb) is the mean energy,\v5Eb2Ea is

the energy difference, andtH52p\r̄(Ē) is the Heisenberg
time. If we hold Ē andv fixed in the limit of small\, the
right-hand side of Eq.~9! is simply 1/tH times the classica
power spectrum of the observableA at energyĒ, with any
structure on frequency scales less than 2p/tH smeared out
by the time cutoff. Equation~9! is the first of two formulas
for ^uAabu2&, that can be found in the literature.

We get the second formula@15–17# by first writing the
squared matrix element in terms of the eigenfunctions as

uAabu25E dfq8 ca* ~q8!AW~q8!cb~q8!

3E dfq cb* ~q!AW~q!ca~q!. ~10!

In a chaotic system, the individual eigenfunctions can
treated as independent random variables with a Gaus
probability distribution@4,18–24#. Because it is Gaussian
this distribution is completely specified by the two-point co
relation function

C~q8,quE![^c~q8!c* ~q!&, ~11!
f

-

e
an

where the angular brackets denote averaging over the p
ability distribution forc(q) given the energyE. Averaging
Eq. ~10! over this probability distribution yields

^uAabu2&5E dfq8 dfq C~q,q8uEa!

3AW~q8!C~q8,quEb!AW~q!. ~12!

This is the second formula for^uAabu2&, which can be found
in the literature. The question is whether or not it is the sa
as the first formula, Eq.~9!.

Of course, in order to answer this question we need
explicit expression forC(q,q8uE). Berry @4# conjectured
that, in the small-\ limit,

C~q8,quE!5E dmE eiP•~q82q!/\d„Q2 1
2 ~q81q!…,

~13!

where the Liouville integral is over (P,Q). However@3#, this
formula for C(q8,quE) appears to be too simple to be ab
reproduce the classical power spectrum ofA, which appears
in Eq. ~9!.

In a separate paper@5#, we have argued that, in fact, Eq
~13! must be modified whenever the separationuq82qu is
large, in the sense that the shortest classical path with en
E, which connectsq to q8 is not well approximated by a
linear function of time. This will be generically true in Eq
~9!, since bothq andq8 are integrated, and since the facto
of AW(q) and AW(q8) do not forceq and q8 to be close
together. Whenq and q8 are far apart, Eq.~13! should be
replaced with

C~q8,quE!5
2

r̄~E!~2p\!~ f 11!/2 (
paths

uDpu1/2

3cos @Sp /\2~2np1 f 21!p/4#, ~14!

where the sum is over all classical paths connectingq to q8

with energy E; each path has actionSp5*q
q8p•dq, focal

point numbernp , and fluctuation determinant

Dp5detS ]2Sp

]q]q8

]2Sp

]E]q8

]2Sp

]q]E

]2Sp

]E2
D . ~15!

Equation~14! actually holds only if the system is invarian
under time reversal; otherwise a more cumbersome form
is needed@5#. The final formula for̂ uAabu2& turns out to be
the same in either case, and so to simplify the notation
will use Eq. ~14!. Equation~14!, or its replacement for a
system that is not time-reversal invariant, is valid as long
the contributing path of least action hasSp /\@1. This is of
course true generically in the limit of small\.

We now show that if we use Eq.~14! for C(q8,quE), Eq.
~12! gives the same result for^uAabu2& as Eq.~9!.

We begin by substituting Eq.~14! into Eq.~12!. Since we
are interested in the limit of small\ with Ē andv held fixed,
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we can usually replaceEa andEb with Ē. We then make use
of the ‘‘diagonal approximation’’@25# in which the double
sum over paths is collapsed to a single sum. In related
culations@25,16#, this can be justified by the rapidly oscilla
ing phases of the off-diagonal terms as long as the sin
sum includes only those paths whose elapsed times are
than the Heisenberg time. We assume the same cond
holds here. The product of cosines in each diagonal t
then yields a single cosine, which is slowly oscillating, a
we get

^uAabu2&5
2

r̄~Ē!2~2p\! f 11E dfq8 dfq

3AW~q8!AW~q! (
paths

uDpucos~vtp!. ~16!

The sum is over paths fromq to q8 with energy Ē, and
elapsed time

tp5
]Sp

]E U
E5Ē

~17!

less than the Heisenberg timetH . We have implicitly as-
sumed that the topological quantitynp does not change a
the energy of the path is varied fromĒ2 1

2 \v to Ē1 1
2 \v.

To make further progress we need to rewrite the fluct
tion determinant as

Dp5detS 2
]p

]q8

]t

]q8

2
]p

]E

]t

]E
D . ~18!

Herep52]Sp /]q is the momentum at the beginning of th
path, andt5tp is the elapsed time along the path, given
Eq. ~17!. With these definitions, Eq.~18! follows immedi-
ately from Eq.~15!. Equation~18! shows us thatuDpu can be
thought of as a Jacobian for a change of variables from
final positionq8 and total energyĒ to the initial momentum
p and elapsed timet @26#. To make use of this, we inse
15*dĒ d„Ē2HW(p,q)… into Eq.~16! and change variables
We now have

^uAabu2&5
1

p\r̄~Ē!2E0

tH
dtE dfp dfq

~2p\! f

3 (
paths

d„Ē2HW~p,q!… cos~vt!

3AW~q8!AW~q!. ~19!
l
n-
l-
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ss
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-

e

The sum is over all paths that begin at (p,q) and have
elapsed timet. However, there is only one such path, and
the sum over paths may be dropped. Also,q8 is the position
at timet, and it is now more properly denotedqt . Using Eq.
~3! andtH52p\r̄(Ē), we see that Eq.~19! can be rewritten
as

^uAabu2&5
2

tH
E

0

tH
dt cos~vt!E dm Ē AW~qt!AW~q!.

~20!

Using the fact that time-translation invariance implies th
*dm Ē AW(qt)AW(q) is an even function oft ~even if the
system is not time-reversal invariant!, we see immediately
that Eq.~20! is equivalent to Eq.~9!, up to the issue of the
detailed treatment of the large-time cutoff. This is our ma
result.

Another quantity of interest is the size of the fluctuatio
in the diagonal matrix elementsAaa . If we first shift A ~if
necessary! so that̂ Aaa&5*dmEa

AW(q)50, then the object

we wish to evaluate iŝuAaau2&. This has been done prev
ously @27,28,16# by making use of the trace formul
@26,29,30# and properties of periodic orbits. Here we w
compute^uAaau2& by averaging over the Gaussian probab
ity distribution for energy eigenfunctions@15–17#. In the
case of a system that is not invariant under time reversal,
energy eigenfunctions are generically complex, and the
evant formula is@24#

^c1* c2c3* c4&5^c1* c2&^c3* c4&1^c1* c4&^c3* c2&,
~21!

wherec i5ca(qi). If the system is invariant under time re
versal, the energy eigenfunctions are real, and we have
stead@24#

^c1c2c3c4&5^c1c2&^c3c4&1^c1c4&^c2c3&

1^c1c3&^c2c4&. ~22!

Combined with the previous results for^uAabu2&, we find that

^uAaau2&5
g

tH
E

2tH

tH
dtE dmEa

AW~qt!AW~q!. ~23!

Hereg52 for a system that is invariant under time revers
andg51 for a system that is not. Equation~23! is in agree-
ment with the results of@27,28,16#.
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